

Exceptional service in the national interest

Dakota Software Training

Dakota Overview

http://dakota.sandia.gov

Module Learning Goals

- What is Dakota?
- Why use Dakota?
- Prerequisites for Using Dakota
- Training outline

WHAT IS DAKOTA?

Dakota enhances simulations...

Algorithms for design exploration and simulation credibility

- Suite of iterative mathematical and statistical methods that interface to computational models
- Makes sophisticated parametric exploration of simulations practical for a computational design-analyze-test cycle
- Provides scientists and engineers (analysts, designers, decision makers) greater perspective on model predictions:
 - Enhances understanding of risk by quantifying margins/uncertainties
 - Improves products through simulation-based design, calibration
 - Assesses simulation credibility through verification and validation

...by analyzing ensembles

- Strategically selects model parameters
- Manages concurrent simulations
- Analyzes responses (model outputs)
- Automates one-pass parameter variation/ analysis to advanced goal-oriented studies

Run	Input	ut Output	
1	0.814	91.3	
2	0.906	63.24	
N	1.270	9.75	

Key Questions Answered

Dakota makes iterative parametric analysis practical for blackbox simulations to answer questions of:

- Sensitivity: Which are the crucial factors/parameters?
- Uncertainty: How safe, reliable, or robust is my system?
- Optimization: What is the best performing design or control?
- Calibration: What models and parameters best match data?

Indirectly:

- Verification: Is the model implemented correctly, converging as expected?
- Validation: How does the model compare to experimental data, including uncertainties?

Enables quantification of margins and uncertainty (QMU) and design with simulations; analogous to experiment-based QMU and physical design/test.

Sensitivity Analysis

- Which are the most influential parameters?
- Interrogate model to assess input/output mapping
 - Expose model characteristics, trends, robustness
 - Focus resources for data gathering or model/code development
 - Screening: reduce variables for UQ or optimization analysis
- Dakota automates common single parameter variations, and provides richer global sensitivity methods

- Xyce model of CMOS7 ViArray
- Assess influence of manufacturing variability on supply voltage performance during photocurrent event

Uncertainty Quantification

- Given parameter uncertainty, what is the uncertainty in the model output?
 - Mean or median performance of a system
 - Overall variability in model response
 - Probability of reaching failure/success (reliability)
 - Range/intervals of possible outcomes
- UQ also enables statistical validation metrics

- Device subject to heating, e.g., modeled with heat transfer code
- Uncertainty in composition/ environment (thermal conductivity, density, boundary)
- Make risk-informed decisions about margin to critical temperature

Optimization

- Goal-oriented: find the best performing design or scenario, subject to constraints
 - Identify system designs with maximal performance
 - Determine operational settings to achieve goals
 - Minimize cost over system designs/operational settings
 - Identify best/worst case scenarios

- Computational fluid dynamics code to model F-35 performance
- Find fuel tank shape with constraints to minimize drag, yaw while remaining sufficiently safe and strong

Calibration / Parameter Estimation

- Data-driven: find parameter values that maximize agreement between simulation output and experiment
 - Seek agreement with one or more experiments, or high-fidelity model runs
 - Yields: single best set, range, or distribution of parameters most consistent with data

 Calibrate material model parameters to match experimental stress observations

Supports Credible Prediction

Dakota can help with parts of a V&V workflow, crucial for credible prediction

Example: ASME V&V 10 Guide for Verification and Validation in Computational Solid **Mechanics**

verification

validation

WHY USE DAKOTA?

Dakota: Distinguishing Strengths

- Makes sensitivity analysis, optimization, and uncertainty quantification practical for costly computational models
- Flexible interface to simulation codes: one interface; many methods
- Combined deterministic/probabilistic analysis
- Continual advanced algorithm R&D to tackle computational challenges (particularly in SNL's national security mission)
 - Treats non-smooth, discontinuous, multi-modal responses
 - Surrogate-based, multi-fidelity, and hybrid methods
 - Risk-informed decision-making: epistemic and mixed UQ, rare events, Bayesian
- Scalable parallel computing from desktop to HPC

Many Methods in One Tool

		A	•
Sens	ativit	y Ana	IVSIS
000		<i>,</i>	.,

- Designs: MC/LHS, DACE, sparse grid, one-at-a-time
- Analysis: correlations, scatter,
 Morris effects, Sobol indices

Optimization

- Gradient-based local
- Derivative-free local
- Global/heuristics
- Surrogate-based

Uncertainty Quantification

- MC/LHS/Adaptive Sampling
- Reliability
- Stochastic expansions
- Epistemic methods

Calibration

- Tailored gradient-based
- Use any optimizer
- Bayesian inference

Interface Dakota to your simulation once, then apply various algorithms depending on your goal...

Engineering Needs Drive Dakota R&D

Advanced approaches help you solve practical problems:

- Characterize parameter uncertainty → Bayesian calibration
- Hybrid analysis → mix methods, surrogates, and models
- Mixed uncertainty characterizations → epistemic and mixed UQ approaches
- Costly simulations → surrogate-based optimization and UQ
- Build in safety or robustness → mixed deterministic/ probabilistic methods

min
$$f(d) + Ws_u(d)$$

s.t. $g_l \leq g(d) \leq g_u$
 $h(d) = h_t$
 $d_l \leq d \leq d_u$
 $a_l \leq A_i s_u(d) \leq a_u$
 $A_e s_u(d) = a_t$

Computing and Parallelism

- Runs in various computing environments
 - Desktop: Mac, Linux, Windows
 - HPC: Linux clusters, IBM Blue Gene/P and /Q, IBM AIX, including many DOE machines
 - Distributed workstation computing
- Exploits concurrency at multiple levels
 - Multiprocessor simulations
 - Multiple simulations per response
 - Samples in a parameter study
 - Optimizations from multiple starting points
- File management features, including
 - Work directories to partition analysis files
 - Template directories share files common among analyses

Dakota History and Resources

- Genesis: 1994 optimization LDRD
- Modern software quality and development practices
- Released every May 15 and Nov 15
- Established support process for SNL, partners, and beyond

Mike Eldred, Founder

Lab mission-driven algorithm R&D deployed in production software

- Extensive website: documentation, training materials, downloads
- Open source facilitates external collaboration; widely downloaded

PREREQUISITES FOR USING DAKOTA

Intended Audience

Primarily used by computational scientists and engineers,
 who work with simulations/models

Helpful background:

- Familiarity with mathematics, statistics, computer science
- Scripting or programming to create a Dakota-to-simulation interface
- Comfort with text-based input files and command-line interface
- Familiarity with plotting or visualization tools to post-process Dakota results

What Simulations Work with Dakota?

- Applied to many science and engineering domains: mechanics, structures, shock, fluids, electrical, radiation, bio, chemistry, climate, infrastructure, etc.
- Example simulation codes:
 finite element, discrete event, Matlab, Python models

- Helpful simulation characteristics:
 - Can be run in a non-interactive / batch mode
 - Parameters (inputs) not hard-wired, can be adjusted
 - Simulation responses (outputs) can be programmatically processed to extract a few key quantities of interest
 - Model is robust to parameter variations

Getting Started and Getting Help

Tour http://dakota.sandia.gov at a high level

- Getting Started
 - Download (LGPL license, freely available worldwide): http://dakota.sandia.gov/download.html
 - Getting Started: http://dakota.sandia.gov/quickstart.html
 - User's Manual, Chapter 2: Tutorial with example input files http://dakota.sandia.gov/sites/default/files/docs/6.2/Users-6.2.0.pdf
- Getting Help
 - Extensive documentation (user, reference, developer):
 http://dakota.sandia.gov/content/manuals
 - Support mailing list (reaches Dakota team and user community): dakota-users@software.sandia.gov